## Physical Chemistry

The First Course

### <u>SYLLABUS</u>

-Gases [ideal gas laws, Kinetic theory of gases, Maxwells distribution of molecular velocities, collision properties, mean free path, deviation from ideal behavior-vander waals equation

-Thermochemistry

- Second law of thermodynamics and its applications
- Chemical equilibrium of homogenous and heterogeneous reaction
- Colligative properties [Osmotic pressuer,boiling point elevation, freezing point depression]

## <u>Reference</u>

-Physical Chemistry by AtKins

- Physical Chemistry by Barrow

-كيمياء فيزيائية مسائل وحلول دانيس النجار

#### Common unit

#### <u>Volume</u>

1m=1000mm

- =100cm
- =10dm
- $1ml=1cm^3$
- 1L=1000ml=1000cm<sup>3</sup>
- 1L=dm<sup>3</sup>
- $1m^3 = (100)^3 cm^3$
- 1m<sup>3</sup>=1000L

#### **Pressure**

 $P = F/A = N/m^2 = Pa$  $\frac{J/m}{m^2} = \frac{J}{m_z^2}$  $\overline{m_2^3}$  $J=Kg \frac{m^2}{S^2}$  $N=\frac{J}{2}$  $\mathbf{P} = \frac{KgS^{-2}m^2}{m} = \text{Kg.m. S}^{-2}$ =kg/mS<sup>2</sup> *1atm=760mmHg =760 torr 1torr=1mmHg* 1atm=101325Pa =1.01325x10<sup>5</sup>Pa =101.325 kPa 1bar=10<sup>5</sup>Pa *1bar=0.989 atm* 1 torr=101325/760 =133.3 Pa 1mmHg =133Pa.

#### The gas Law

Four variables are needed to define the physical condition, or *state*, of a gas: temperature, pressure, volume, and amount of gas, usually expressed as number of moles. The equations that express the relationships among these four variables are known as the *gas laws* 

#### **The Pressure-Volume Relationship: Boyel s Law**

Boyle's law can be expressed mathematically as

 $V = constant x \frac{1}{p}$  or PV = constant

 $P_1V_1=P_2V_2$  at constant(T, n)



▲ Figure 10.6 Boyle's Law. For a fixed quantity of gas at constant temperature, the volume of the gas is inversely proportional to its pressure.

#### **The Temperatuer-Volume Relationship: Charles s Law**

The relationship between gas volume and temperature—volume increases as temperature increases and decreases as temperature decreases—was discovered in 1787 by French scientist Jacques Charles





Mathematically, Charles's law takes the form

V = constant x T or  $\frac{V}{T}$  = constant

$$\frac{V1}{T1} = \frac{V2}{T2}$$
 at constant (p . n)

#### The Quantity-Volume Relationship : Avogadro's Law

Avogadro's law follows from Avogadro's hypothesis: The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. That is,

V = constant x n or V. n = constant  $\frac{V1}{n1} = \frac{V2}{n2}$  at constant (T,P)

#### **Practice Exercise**

A helium balloon is filled to a volume of 5.60 liters at 25 °C. What will the volume of the balloon become if it is put into liquid nitrogen to lower the temperature of the helium to 77 K?

(a) 17 L (b) 22 L (c) 1.4 L (d) 0.046 L (e) 3.7 L

#### **The Ideal-Gas Equation**

 $\mathbf{PV} = \mathbf{nRT}$ 

**Gas Densities and Molar Mass** 

n=m/M, d=m/V P=m/V. RT/M  $d = \frac{n\mathcal{M}}{V} = \frac{P\mathcal{M}}{RT}$ 

Exercise:- What is the density of carbon tetrachloride vapor at 714 torr and 125 °C?

$$\mathcal{M} = \frac{dRT}{P}$$
$$d = \frac{(0.939 \text{ atm})(153.8 \text{ g/mol})}{(0.08206 \text{ L-atm/mol-K})(398 \text{ K})} = 4.42 \text{ g/L}$$

#### **Gas Mixtures and Partial pressuer**

The total pressure of a mixture of gases equals the sum of the pressures that each would exert if it were present alone

Pt = P1 + P2 + P3 + c

P1 = n1(RT/V)

P2 = n2(RT/V)

P3 = n3 (RT/V)

PT = (n1 + n2 + n3 + ...) (RT/V) = nT (RT/V)

# **Exercise** :- mixture of 6<u>.00 g</u> of O<sub>2</sub> and 9.00 g of CH<sub>4</sub> is placed in a 15.0-L vessel at 0 °C. What is <u>the partial pressure</u> of each gas, and what is the total pressure in the vessel? <u>Solve</u>

We first convert the mass of each gas to moles:

```
nO_2 = (6.00 \text{ g } O_2)(1 \text{ mol } O_2/32.0 \text{ g } O_2) = 0.188 \text{ mol } O_2
```

 $nCH_4 = (9.00 \text{ g } CH_4)(1 \text{ mol } CH_4/16.0 \text{ g } CH_4) = 0.563 \text{ mol } CH_4$ 

We use the ideal-gas equation to calculate the partial pressure of each gas:

 $PO_2 = n_{O2}RT/V = (0.188 \text{ mol})(0.08206 \text{ L-atm/mol-K})(273 \text{ K})/15.0 \text{ L} = 0.281 \text{ atm}$ 

 $PCH_4 = n_{CH4}RT/V = (0.563 \text{ mol})(0.08206 \text{ L-atm/mol-K})(273 \text{ K})/15.0 \text{ L} = 0.841 \text{ atm}$ 

According to Dalton's law of partial pressures (Equation 10.12), the total pressure in the vessel is the sum of the partial pressures:

 $Pt = P_{O2} + P_{CH4} = 0.281 \text{ atm} + 0.841 \text{ atm} = 1.122 \text{ atm}$