Physical Chemistry

The First Course

SYLLABUS

-Gases [ideal gas laws, Kinetic theory of gases, Maxwells distribution of molecular velocities, collision properties, mean free path, deviation from ideal behavior-vander waals equation
-Thermochemistry

- Second law of thermodynamics and its applications
- Chemical equilibrium of homogenous and heterogeneous reaction
- Colligative properties [Osmotic pressuer,boiling point elevation, freezing point depression]

Reference

-Physical Chemistry by AtKins

- Physical Chemistry by Barrow
-كيمياء فيزيائية مسائل وحلول د.انيس النجار

Common unit

Volume

1 m	$=1000 \mathrm{~mm}$
	$=100 \mathrm{~cm}$
	$=10 \mathrm{dm}$
1 ml	$=1 \mathrm{~cm}^{3}$
1 L	$=1000 \mathrm{ml}=1000 \mathrm{~cm}^{3}$
1 L	$=\mathrm{dm}^{3}$
$1 \mathrm{~m}^{3}$	$=(100)^{3} \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}$	$=1000 \mathrm{~L}$

$$
\begin{gathered}
\mathrm{P}=\mathrm{F} / \mathrm{A}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{Pa} \\
\frac{\mathrm{~J} / \mathrm{m}}{m^{2}}=\frac{J}{m^{3}} \\
\mathrm{~J}=\mathrm{Kg} \frac{m^{2}}{s^{2}} \\
\mathrm{~N}=\frac{J}{m} \\
\mathrm{P}=\frac{\mathrm{KgS}^{-2} \mathrm{~m}^{2}}{\mathrm{~m}}=\mathrm{Kg} \cdot \mathrm{~m} . \mathrm{S}^{-2} \\
=\mathrm{kg} / \mathrm{mS} \mathrm{~S}^{2} \\
1 \mathrm{~atm}=760 \mathrm{mmHg} \\
=760 \mathrm{torr} \\
1 \mathrm{torr}=1 \mathrm{mmHg} \\
1 \mathrm{~atm}=101325 \mathrm{~Pa} \\
=1.01325 \mathrm{x} 10^{5} \mathrm{~Pa} \\
=101.325 \mathrm{kPa} \\
1 \mathrm{bar}=10^{5} \mathrm{~Pa} \\
1 \mathrm{bar}=0.989 \mathrm{~atm} \\
1 \mathrm{torr}=101325 / 760 \\
=133.3 \mathrm{~Pa} \\
1 \mathrm{mmHg}=133 \mathrm{~Pa} .
\end{gathered}
$$

The gas Law

Four variables are needed to define the physical condition, or state, of a gas: temperature, pressure, volume, and amount of gas, usually expressed as number of moles. The equations that express the relationships among these four variables are known as the gas laws

The Pressure-Volume Relationship: Boyel s Law

Boyle's law can be expressed mathematically as
$\mathrm{V}=$ constant $\mathrm{x} \frac{1}{\mathrm{p}} \quad$ or $\mathrm{PV}=$ constant

$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$ at constant($\left.\mathrm{T}, \mathrm{n}\right)$

What would a plot of P versus $1 / \mathrm{V}$ look like for a fixed quantity of gas at a fixed temperature?

© Figure 10.6 Boyle's Law. For a fixed quantity of gas at constant temperature, the volume of the gas is inversely proportional to its pressure.

The Temperatuer-Volume Relationship: Charles s Law

The relationship between gas volume and temperature-volume increases as temperature increases and decreases as temperature decreases-was discovered in 1787 by French scientist Jacques Charles

Mathematically, Charles's law takes the form
$V=$ constant $x \quad$ or $\frac{V}{T}=$ constant

$$
\frac{\mathbf{V} \mathbf{1}}{\mathbf{T} \mathbf{1}}=\frac{\mathbf{V} \mathbf{2}}{\mathbf{T} \mathbf{2}} \quad \text { at constant }(\mathrm{p} \cdot \mathrm{n})
$$

The Quantity-Volume Relationship :Avogadro's Law

Avogadro's law follows from Avogadro's hypothesis: The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. That is,

$$
\mathrm{V}=\text { constant } \mathrm{x} \mathrm{n} \quad \text { or } \mathrm{V} . \mathrm{n}=\text { constant } \quad \frac{\mathrm{V} 1}{\mathrm{n} 1}=\frac{\mathrm{V} 2}{\mathrm{n} 2} \text { at } \operatorname{constant}(\mathbf{T}, \mathbf{P})
$$

Practice Exercise

A helium balloon is filled to a volume of 5.60 liters at $25^{\circ} \mathrm{C}$. What will the volume of the balloon become if it is put into liquid nitrogen to lower the temperature of the helium to 77 K ?
(a) 17 L
(b) 22 L
(c) 1.4 L
(d) 0.046 L
(e) 3.7 L

The Ideal-Gas Equation

$\mathbf{P V}=\mathbf{n R T}$

Gas Densities and Molar Mass

$\mathrm{n}=\mathrm{m} / \mathrm{M}, \mathrm{d}=\mathrm{m} / \mathrm{V} \quad \mathrm{P}=\mathrm{m} / \mathrm{V} . \mathrm{RT} / \mathrm{M}$

$$
d=\frac{n \mathcal{M}}{V}=\frac{P \mathcal{M}}{R T}
$$

Exercise:- What is the density of carbon tetrachloride vapor at 714 torr and $125^{\circ} \mathrm{C}$?

$$
\begin{gathered}
\mathcal{M}=\frac{d R T}{P} \\
d=\frac{(0.939 \mathrm{~atm})(153.8 \mathrm{~g} / \mathrm{mol})}{(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(398 \mathrm{~K})}=4.42 \mathrm{~g} / \mathrm{L}
\end{gathered}
$$

Gas Mixtures and Partial pressuer

The total pressure of a mixture of gases equals the sum of the pressures that each would exert if it were present alone

$$
\begin{aligned}
& \mathrm{Pt}=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{c} \\
& \mathrm{P} 1=\mathrm{n} 1(\mathrm{RT} / \mathrm{V}) \\
& \mathrm{P} 2=\mathrm{n} 2(\mathrm{RT} / \mathrm{V}) \\
& \mathrm{P} 3=\mathrm{n} 3(\mathrm{RT} / \mathrm{V}) \\
& \mathrm{PT}=(\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3+\ldots)(\mathrm{RT} / \mathrm{V})=\mathrm{nT}(\mathrm{RT} / \mathrm{V})
\end{aligned}
$$

Exercise :- mixture of 6.00 g of O_{2} and 9.00 g of CH_{4} is placed in a $15.0-\mathrm{L}$ vessel at $0{ }^{\circ} \mathrm{C}$. What is the partial pressure of each gas, and what is the total pressure in the vessel? Solve

We first convert the mass of each gas to moles:
$\mathrm{nO}_{2}=\left(6.00 \mathrm{~g} \mathrm{O}_{2}\right)\left(1 \mathrm{~mol} \mathrm{O}_{2} / 32.0 \mathrm{~g} \mathrm{O}_{2}\right)=0.188 \mathrm{~mol} \mathrm{O}_{2}$
$\mathrm{nCH}_{4}=\left(9.00 \mathrm{~g} \mathrm{CH}_{4}\right)\left(1 \mathrm{~mol} \mathrm{CH}_{4} / 16.0 \mathrm{~g} \mathrm{CH}_{4}\right)=0.563 \mathrm{~mol} \mathrm{CH}_{4}$
We use the ideal-gas equation to calculate the partial pressure of each gas:
$\mathrm{PO}_{2}=\mathrm{n}_{\mathrm{O} 2} \mathrm{RT} / \mathrm{V}=(0.188 \mathrm{~mol})(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(273 \mathrm{~K}) / 15.0 \mathrm{~L}=0.281 \mathrm{~atm}$
$\mathrm{PCH}_{4}=\mathrm{n}_{\mathrm{CH} 4} \mathrm{RT} / \mathrm{V}=(0.563 \mathrm{~mol})(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(273 \mathrm{~K}) / 15.0 \mathrm{~L}=0.841 \mathrm{~atm}$
According to Dalton's law of partial pressures (Equation 10.12), the total pressure in the vessel is the sum of the partial pressures:
$\mathrm{Pt}=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{CH} 4}=0.281 \mathrm{~atm}+0.841 \mathrm{~atm}=1.122 \mathrm{~atm}$

